Cascade and Damping of Alfvén-Cyclotron Fluctuations: Application to Solar Wind Turbulence Spectrum

نویسندگان

  • Yan Wei Jiang
  • Siming Liu
  • Vahé Petrosian
  • Christopher L. Fryer
چکیده

With the diffusion approximation, we study the cascade and damping of Alfvén-cyclotron fluctuations in solar plasmas numerically. Motivated by wavewave couplings and nonlinear effects, we test several forms of the diffusion tensor. For a general locally anisotropic and inhomogeneous diffusion tensor in the wave vector space, the turbulence spectrum in the inertial range can be fitted with power-laws with the power-law index varying with the wave propagation direction. For several locally isotropic but inhomogeneous diffusion coefficients, the steady-state turbulence spectra are nearly isotropic in the absence of damping and can be fitted by a single power-law function. However, the energy flux is strongly polarized due to the inhomogeneity that leads to an anisotropic cascade. Including the anisotropic thermal damping, the turbulence spectrum cuts off at the wave numbers, where the damping rates become comparable to the cascade rates. The combined anisotropic effects of cascade and damping make this cutoff wave number dependent on the wave propagation direction, and the propagation direction integrated turbulence spectrum resembles a broken powerlaw, which cuts off at the maximum of the cutoff wave numbers or the He cyclotron frequency. Taking into account the Doppler effects, the model can naturally reproduce the broken power-law wave spectra observed in the solar wind and predicts that a higher break frequency is aways accompanied with a greater spectral index change that may be caused by the increase of the Alfvén Mach number, the reciprocal of the plasma beta, and/or the angle between the solar wind velocity and the mean magnetic field. These predictions can be tested by future observations. Subject headings: MHD — plasmas — solar wind — turbulence — Alfvén waves Center for Space Science and Astrophysics, Department of Physics, Stanford University, Stanford, CA 94305; [email protected], [email protected] Los Alamos National Laboratory, Los Alamos, NM, 87545; [email protected], [email protected], [email protected] Also Department of Applied Physics

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cascade and Damping of Alfvén-Cyclotron Fluctuations: Application to Solar Wind Turbulence

It is well-recognized that the presence of magnetic fields will lead to anisotropic energy cascade and dissipation of astrophysical turbulence. With the diffusion approximation and linear dissipation rates, we study the cascade and damping of Alfvén-cyclotron fluctuations in solar plasmas numerically for two diagonal diffusion tensors, one (isotropic) with identical components for the parallel ...

متن کامل

A Model of Turbulence in Magnetized Plasmas: Implications for the Dissipation Range in the Solar Wind

This paper studies the turbulent cascade of magnetic energy in weakly collisional magnetized plasmas. A cascade model is presented, based on the assumptions of local nonlinear energy transfer in wavenumber space, critical balance between linear propagation and nonlinear interaction times, and the applicability of linear dissipation rates for the nonlinearly turbulent plasma. The model follows t...

متن کامل

Alfvénic Turbulence in the Extended Solar Corona: Kinetic Effects and Proton Heating

We present a model of magnetohydrodynamic (MHD) turbulence in the extended solar corona that contains the effects of collisionless dissipation and anisotropic particle heating. Recent observations have shown that preferential heating and acceleration of positive ions occur in the first few solar radii of the high-speed solar wind. Measurements made by the Ultraviolet Coronagraph Spectrometer ab...

متن کامل

Parallel and perpendicular cascades in solar wind turbulence

MHD-scale fluctuations in the velocity, magnetic, and density fields of the solar wind are routinely observed. The evolution of these fluctuations, as they are transported radially outwards by the solar wind, is believed to involve both wave and turbulence processes. The presence of an average magnetic field has important implications for the anisotropy of the fluctuations and the nature of the...

متن کامل

Small scale energy cascade of the solar wind turbulence

Magnetic fluctuations in the solar wind are distributed according to Kolmogorov’s power law f below the ion cyclotron frequency fci. Above this frequency, the observed steeper power law is usually interpreted in two different ways: a dissipative range of the solar wind turbulence or another turbulent cascade, the nature of which is still an open question. Using the Cluster magnetic data we show...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008